

Product Portfolio

Highest Performance, Highest Reliability GaN

Devices									
Part Number	VDS (V) min	Rds(on) (mΩ) typ	Rds(on) (mΩ) max	Id (25°C) (A) max	Package	Package Variation			
TP65H015G5WS	650	15	18	95	TO-247	Source			
TP65H035G4WS	650	35	41	46.5	TO-247	Source			
TP65H035G4WSQA	650	35	41	46.5	TO-247	Source			
TP65H035WS	650	35	41	46.5	TO-247	Source			
TP65H035WSQA	650	35	41	47	TO-247	Source			
TP65H050G4WS	650	50	60	34	TO-247	Source			
TP65H050G4BS	650	50	60	34	TO-263	Source			
TP65H050WSQA	650	50	60	36	TO-247	Source			
TP65H050WS	650	50	60	36	TO-247	Source			
TP65H070LSG	650	72	85	25	PQFN88	Source			
TP65H070LDG	650	72	85	25	PQFN88	Drain			
TP65H150G4PS	650	150	180	16	TO-220	Source			
TP65H150G4LSG	650	150	180	16	PQFN88	Source			
TP65H300G4LSG	650	240	312	6.5	PQFN88	Source			
TP65H480G4JSG	650	480	560	3.6	PQFN56	Source			
TP90H050WS	900	50	63	34	TO-247	Source			

Sampling									
Part Number	VDS (V) min	Rds(on) (mΩ) typ	Rds(on) (mΩ) max	Id (25°C) (A) max	Package	Package Variation			
TP65H035G4QS	650	35	41	46.5	TOLL	Source			
TP65H050G4QS	650	50	60	34	TOLL	Source			
TP65H070G4LSGB	650	72	85	29	PQFN88	Source			
TP65H070G4PS	650	72	85	29	TO-220	Source			
TP65H150BG4JSG	650	150	180	16	PQFN56	Source			
TP65H150G4LSGB	650	150	180	16	PQFN88	Source			
TP65H300G4JSGB	650	240	312	6.5	PQFN56	Source			
TP65H300G4LSGB	650	240	312	6.5	PQFN88	Source			
TP65H480G4JSGB	650	480	560	3.6	PQFN56	Source			

PQFN56 Industry

PQFN88

Why Transphorm GaN

Manufacturability

A vertically integrated supply chain allows for innovation at each critical stage of device development.

Drivability

A two-chip normally-off device allows for the use of well-known, off-the-shelf drivers and

Designability

Industry Standard packages and Performance packages require minimal peripheral circuitry. Firmware support is accessible worldwide.

Reliability

Proven to deliver the highest reliability today with a < 0.05 FIT over 100+ billion hours of field operation in low to high power applications.

Competitive Landscape

HIGH POWER

BROADEST RANGE OF POWER

LOW POWER

TRANSPHORM GaN

Low thru high power breadth Easiest of design and drive Compatible with OTS drivers Robust gate Two chip solution Best thermal solution (TO-xxx) Proven/documented high rel.

JEDEC and AEC-Q101 qualified

Easy to drive

Older technology Slower technology Higher switching losses Lower power density

E-MODE GaN

Single die

dV/dt sensitivity PCB layout sensitivity Unproven field robustness Higher conduction losses (TCR) JEDEC qualified only Not available in std. TO-xxx Only 650 V for HV

SILICON CARBIDE

High power applications Low power prohibitive Higher switching losses Higher 3rd quadrant losses Requires negative drive Requires isolated supplies Substrate cost and sourcing challenges (long lead times)

Exposed GaN gate

INTEGRATED CIRCUIT GaN

Drive synchronization issues Poor switching control* Lower power density Higher conduction losses (TCR) High power app. prohibitive Unproven field reliability** Not available in std. TO-xxx 650V only for HV

